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Abstract
Different types of superfluid ground states have been investigated in systems of two species of
fermions with Fermi surfaces that do not match. This study is relevant for cold atomic systems,
condensed matter physics, and quark matter. In this paper we consider this problem when the
fermionic quasi-particles can transmute into one another and only their total number is
conserved. We use a Bardeen–Cooper–Schrieffer (BCS) approximation to study
superconductivity in two-band metallic systems with inter-and intra-band interactions. Tuning
the hybridization between the bands varies the mismatch of the Fermi surfaces and produces
different instabilities. For inter-band attractive interactions, we find a first-order
normal–superconductor transition and a homogeneous metastable phase with gapless
excitations. In the case of intra-band interactions, the transition from the superconductor to the
normal state is continuous as hybridization increases and associated with a quantum critical
point. The case when both interactions are present is also considered.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A new superfluid ground state originally named interior gap
or breached pairing (BP) superfluidity has recently been
investigated [1–3]. This state presents a homogeneous mixture
of normal and superfluid properties and should occur in
fermionic systems with different Fermi surfaces. Superfluidity
develops at the Fermi surface of the quasi-particles with the
smallest Fermi momentum. Since its proposal, much work
has been done in understanding the nature of this state and,
in particular, its stability [2, 4]. In this work, we consider the
possibility of interior gap superfluidity in systems where the
quasi-particles can transmute into one another and only their
total number is conserved. Our results are directly relevant
for condensed matter systems, cold-atom systems [5] in the
presence of Rabi coupling [3], and should be of interest for the
study of color superconductivity on the core of neutron stars
with quarks that can interchange their flavors [4, 6–8]. In cold
2-flavor quark matter, besides uu and dd pairings, there is also
ud pairing, since weak processes can supply a hybridization
between u and d quarks.

For concreteness, we focus in the former problem,
specifically on superconductivity in transition metals (TM)

or rare-earth inter-metallic systems where a large a-band of
conduction electrons (s, or p) coexists with a narrow b-band
of d- or f-electrons. We consider inter-and intra-band attractive
interactions. In both cases we show that a finite interaction
is necessary to give rise to superconductivity, differently from
the Bardeen–Cooper–Schrieffer (BCS) [9] case. For inter-
band attraction the transition into the superconducting state is
first order. We find a new metastable superconducting state
with features of the internal gap or breached pairing state [2],
including Fermi surfaces with gapless excitations. In the
intra-band case, there is a superconducting quantum critical
point (QCP) that can be probed in experiments under pressure.
Finally, we include both inter-and intra-band interactions,
and show that in this case gapless excitations are generally
suppressed.

2. Inter-band superconductivity

We initially consider a model with two types of quasi-
particles, a and b, with an attractive interaction [10] g and a
hybridization term V that mixes different quasi-particle states.
This one-body mixing term V may be tuned by external
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parameters, allowing us to explore the phase diagram and
quantum phase transitions of the model. The Hamiltonian is
given by,

H =
∑

kσ

εa
k a†

kσ akσ +
∑

kσ

εb
k b†

kσ bkσ

+ g
∑

kk′σ
a†

k′σ b†
−k′−σ b−k−σ akσ +

∑

kσ

Vk(a
†
kσ bkσ + b†

kσ akσ )

(1)

where a†
kσ and b†

−k′−σ are creation operators for the light a and
the heavy b-quasi-particles, respectively. The index � = a, b.
The dispersion relations ε�

k = k2/2m� − μ� and the ratio
between effective masses is taken as α = ma/mb < 1.

The V -term is responsible for the transmutation among
the quasi-particles. In metallic systems, such as transition met-
als [11], inter-metallic compounds and heavy fermions [12], it
arises from mixing of the wavefunctions of the quasi-particles
through the crystalline potential. In the quark problem, it is
the weak interaction that allows the transformation between up
and down quarks and gives rise to the mixing term [6–8]. For
a system of cold fermionic atoms in an optical lattice, with two
atomic states (a and b), the V -term is due to Raman transitions
with an effective Rabi frequency which is directly proportional
to V [3]. Then, the hybridization term is included to take into
account these effects that allow for a quasi-particle (a or b)
transform into one another, such that only the total number of
particles (a + b) is conserved. The physical origin of the V -
term is different for each of the systems, as described above. In
the metallic case, which is our main interest here, hybridization
can be controlled easily through an applied pressure that varies
the overlap between the atomic wavefunctions. In this way it
provides a very useful control parameter that can be changed
externally, allowing us to probe experimentally the phase dia-
gram of these materials.

When V = 0 this model requires a critical value �c
ab of

the order parameter, �ab = −g
∑

k〈akb−k〉, to sustain BCS
superconductivity [1] (we neglect spin indexes here). The
instability of the BCS phase for �ab < �c

ab is associated with
a soft mode at a wavevector kc (ka

F < kc < kb
F) which suggests

a transition to a Fulde and Ferrel, Larkin, Ovchinnikov (FFLO)
state [13] with a characteristic wavevector k = kc. However,
the window of parameters for which this phase is stable is
very narrow [14] and a BP or Sarma phase [1, 15] has also
been considered. Since this corresponds to a maximum of the
free energy, a mixed phase with normal and superconducting
regions [4] was proposed as an alternative ground state for
�ab < �c

ab.
In order to obtain the spectrum of excitations of

equation (1) within the BCS (mean-field) approximation, we
use the equation of motion method to calculate standard
and anomalous Green’s functions [16]. Excitonic types of
correlations that just renormalize the hybridization [17] have
been neglected. For the purpose of obtaining the order
parameter �ab, it is necessary to calculate the anomalous
Green’s function, 〈〈ak; b−k〉〉. When we write the equation of
motion for this Green’s function, new Green’s functions are
generated [16]. Some of these are of higher order, as they
contain a larger number of creation and annihilation operators

than just the two initial Green’s function. For these, we apply a
BCS type of decoupling [16] to reduce them to the order of the
original propagator. Finally, writing the equations of motion
for the new Green’s functions, we obtain a closed system of
equations that can be solved. The anomalous propagator from
which the order parameter is self-consistently obtained is given
by,

〈〈ak; b−k〉〉 = −�ab
[
(ω − εb

k )(ω + εa
k ) + (V 2 − �2

ab)
]

(ω2 − ω2
1)(ω

2 − ω2
2)

.

(2)
Besides, hybridization combined with the interaction

g can give rise to a net attraction between the b quasi-
particles, even in the absence of such interaction in the original
Hamiltonian. This becomes manifest in the calculations where
we find a finite anomalous Green’s function 〈〈bk; b−k〉〉 given
by,

〈〈bk; b−k〉〉 = −2�abV εa
k

(ω2 − ω2
1)(ω

2 − ω2
2)

. (3)

However, it turns out that the anomalous correlation function
〈bkb−k〉 obtained from the above propagator is identically zero.

The poles of the Green’s function, equation (2), occur for
ω = ±ω12(k), where,

ω12(k) =
√

Ak ± √
Bk (4)

with,

Ak = (εa2
k + εb2

k )

2
+ (V 2 + �2

ab) (5)

and

Bk = (εa2
k − εb2

k )2

4
+(εa

k +εb
k )2V 2 +4V 2�2

ab +(εa
k −εb

k )2�2
ab.

(6)
In the calculations below, we take h̄2/(2maμa) = 1,

since the relevant parameter is the mass ratio α. Energies
are normalized by the Fermi energy μa of the light quasi-
particles, such that in all figures the quantities in the axis
are numbers. The original band dispersion relations are then
written as εa

k = k2 − 1 and εb
k = αk2 − b. Assuming that all

states with negative energy are filled, we have ka
F = 1. We take

kb
F = 1.45, α = 1/7, such that μb/μa = b ≈ 0.30, as in [4]

for cold atomic systems1. These numbers are also appropriate
to describe transition metals (TM) for which typical values of
the bandwidths (μa,b) are a few electron-volts, with g and V
both of order 10−1 or 10−2. The mass ratio α ranges from
10−1 for TM to 10−3 for heavy fermions (HF) [18]. The
general features of the solutions that we obtain are, however,
independent of a particular set of parameters. Figure 1 shows
the dispersion relations of the excitations. Differently from the
case V = 0, there are no negative values of the energy [1] for
any �ab �= 0. However, the dispersion relations vanish at two
two-dimensional Fermi surfaces [19] determined by,

εa
k εb

k + (�2
ab − V 2) = 0 (7)

1 Throughout this work, V is sufficiently small, such that both quasi-particle
states are occupied (V � 0.95).
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k

ω

ω2

ω1

Figure 1. Dispersion relations for V = 0.1:
�ab = 0.1 < �c

ab(V = 0.1) ∼ 0.224 (full line) and
�ab = 0.35 > �c

ab(V = 0.1) (dashed line).

for �ab � �c
ab(V ) where,

�c
ab(V ) =

√
�c

ab(V = 0)2 + V 2 (8)

with [4] �c
ab(V = 0) = |(α − b)|/2

√
α. As �ab,

i.e. the coupling g increases and reaches �c
ab(V ), the two

gapless Fermi surfaces (FS) merge at a critical FS. For
�ab > �c

ab(V ) the dispersion relations are BCS-like with
a finite gap for excitations (see figure 1). The instability of
the BCS phase can also be triggered by the hybridization,
which increases the mismatch of the Fermi surfaces due to a
repulsion between the bands [6]. It occurs at a critical value,

Vc =
√

�2
ab − α(kb

F
2 − ka

F
2)2/4 for a fixed �2

ab > α(kb
F

2 −
ka

F
2)2/4. Both instabilities, due to increasing hybridization or

by decreasing the coupling g (or �ab), belong to the same
universality class and are associated with a soft mode at a
wavevector kc.

Dispersion relations with similar features of those shown
in figure 1 were obtained for color superconductivity [19].
An additional p-wave instability at the new FS [20], which is
outside the scope of the present mean-field approach, has been
investigated. In the metallic problem there is the possibility
of additional pairing in the s-wave channel of the same type
of particles due to the extra spin degree of freedom (see
equation (3)). However, as pointed out before, the relevant
anomalous correlation function associated with this Green’s
function turns out to be identically zero. Notice that the
dispersion of the fermions close to the new FS are linear and,
at least in d = 2, this requires a finite interaction for pairing to
occur [21]. It would be interesting to consider other types of
instability at these Fermi surfaces, such as spin density wave
ordering.

From the discontinuity of the Green’s functions on the
real axis we can obtain the anomalous correlation function
characterizing the superconducting state. The self-consistent

Figure 2. Gap function f normalized to its value at V = 0, for
different values of hybridization V . The inset shows the phases
associated with different values of the order parameter �ab for a
fixed hybridization V = 0.1. N is a normal phase, and GS and BCS
correspond to gapless and BCS superconducting phases, respectively.
The interactions gc

1,V and gc
2,V mark the limits of the gapless (GS)

and BCS superconducting phases (see figure 3).

equation for the order parameter �ab = −g
∑

k < b−kak〉 at
T �= 0 is given by,

1

g
=

2∑

j=1

∫
d3k

(2π)3

[
(−1) j

2
√

Bk

(
ω j (k)2 − E2(k)

2ω j (k)

)

× tanh

(
βω j(k)

2

)]
(9)

where E2(k) = εa
k εb

k + (�2
ab − V 2). This equation can be

written as 1/gρ = f (V ,�ab), where ρ is the density of states
at the Fermi level of the a-band. The function f (V ,�ab)

is plotted in figure 2 for several values of the hybridization
parameter. For V = 0 a solution with a finite order parameter
�ab only exists for (1/g) < (1/gc

1) = ρ f (0, 0) with f (0, 0) =
(2/(1 −α))| ln[(b −α)/(ωc(1 −α)+ (b −α))]| ∼ 0.123. The
quantity ωc = 0.01 is a small cut-off energy around the Fermi
energy where the integrals in energy are performed. Still, for
V = 0, there is another characteristic value of the coupling
(1/gc

2) = ρ f (0,�c
ab(V = 0)), such that for gc

1 < g < gc
2

the system presents a BP or a mixed phase [4]. For g > gc
2,

superconductivity is of the BCS type [4]. Since the BP phase
appears as a maximum of the free energy, an alternative state
for gc

1 < g < gc
2 is a mixed phase with coexisting normal

and superconducting BCS-like regions [4]. For g > gc
2 the

superconducting BCS is the stable ground state [4].
As hybridization is turned on at zero temperature, a

stronger value of the coupling g is necessary to obtain a
superconducting solution, since f (V , 0) < f (0, 0) (figure 2).
The function f (V ,�ab) normalized by its value for V = 0
is shown in figure 2. Although hybridization acts to the
detriment of superconductivity, we notice that, at least for
small values of V , a weak coupling approximation is still
justified, as for V = 0 treated in [1]. The function f (V ,�ab)

3



J. Phys.: Condens. Matter 20 (2008) 095216 M A Continentino and I T Padilha

is flat up to �ab = �∗
ab(V ) ∼ V (see figure 2), such

that, when the coupling g is strong enough to stabilize a
superconducting solution, it occurs already at a finite value of
the order parameter. Consequently, for V �= 0 the quantum
normal to the superconducting phase transition as a function of
the coupling g is first order. For �∗

ab(V ) < �ab < �c
ab(V )

there is a superconducting solution, the GS phase in figure 2,
with the spectra of excitations shown in figure 1 as full lines.
This solution corresponds to a metastable minimum of the free
energy. This is shown in figure 3, where we plot the zero-
temperature free energy for a fixed hybridization, V = 0.1, and
different values of the coupling parameter g. The metastable
minima appear for gc

2,V > g > gc
1,V and occur at values of the

order parameter of �∗
ab(V ) < �ab < �c

ab(V ), as shown in
figure 3. For these values of �ab the gaps in the lower branch
of the dispersion relations vanish at two two-dimensional
Fermi surfaces (see figure 1). This superconducting phase
has similarities to the BP superconductor [1] in that both have
gapless excitations, but with the difference that the present one
corresponds to a minimum, even though metastable, of the free
energy. At g = gc

2,V the normal and superconducting phase
exchange stability at a quantum first-order phase transition.
The critical value gc

2,V for a fixed V is given by the condition
E[�ab(V ) = 0, g = gc

2,V ] = E[�ab(V ), g = gc
2,V ], where

E(�ab, V , g) is the zero-temperature free energy. As the
coupling g increases beyond gc

1,V , the first solution for this
equation is obtained for �ab(V ) = �c

ab(V ) (see equation (8)
and figure 3). Thus, the first-order transition as a function of
the coupling strength occurs together with the change in the
excitation spectrum. The ground-state free energy has a kink
at the critical value g = gc

2,V at which the quantum first-order
transition occurs [22]. For g > gc

2,V the stable ground state is
a BCS type of superconductor with gapped excitations, since
the stable free energy minimum occurs for values of the order
parameter of �ab > �c

ab(V ) (see figure 3). The dispersion
relations are like those shown as dashed lines in figure 1. We
point out that for g � gc

1,V (� � �∗
ab(V )) the metastable

minimum of the free energy disappears (figure 3). Then, the
value g = gc

1,V marks the limit of stability of the BCS-
like superconducting phase into the normal phase. The other
limit, of the metastable normal phase in the superconducting
phase, is not shown. Then, as one increases hybridization
in a two-band BCS superconductor with attractive inter-band
interactions, two main effects take place. First, hybridization
increases the mismatch between the Fermi surfaces, giving rise
to a first-order transition from the BCS superconductor to the
normal state. At this transition there appears a metastable GS
phase with two two-dimensional Fermi surfaces with gapless
excitations. Differently from the breached pairing state, in
this GS phase pairing takes place among quasi-particles with
momenta between ka

F and kb
F. The mixing of the quasi-particles

allows them to take advantage of the condensation energy in
this range of k-space, reducing the energy of the GS phase with
respect to the BP state.

3. Intra-band interactions

Next we consider a closely related model which is relevant
for many physical systems of interest, such as inter-metallic

Figure 3. Free energy at zero temperature as a function of the order
parameter for different values of the interaction g and a fixed
hybridization V = 0.1. For gc

2,V > g > gc
1,V there is a metastable

superconducting (GS) phase with �c
ab(V ) > �ab > �∗

ab(V ) and
gapless excitations. Inset shows the ground-state energy as a function
of ε = g − gc

2,V . The ground-state energy has a kink [22] at the
quantum first-order transition at the critical value g = gc

2,V , or at
�ab = �c

ab if plotted as a function of the order parameter.

compounds, high-Tc and heavy-fermion materials [23]. It
consists of a narrow band of quasi-particles with an attractive
interaction that hybridizes with another band. The Hamiltonian
is given by,

H =
∑

kσ

εa
k a†

kσ akσ +
∑

kσ

εb
k b†

kσ bkσ

+ gb

∑

kk′ σ

b†
k′σ b†

−k′−σ b−k−σ bkσ +
∑

kσ

Vk(a
†
kσ bkσ +b†

kσ akσ ).

(10)

In this case we have to keep track of the spin indexes, since
the operators associated with the particles forming the pairs
do not necessarily anticommute. The dispersion relations of
the quasi-particles in the BCS approximation are obtained, as
before, from the poles of the Green’s functions. They are given

by ω12(k) =
√

Ãk ±
√

B̃k with,

Ãk = εa2
k + εb2

k

2
+ V 2 + �2

2
(11)

and

B̃k =
(

εb2
k − εa2

k + �2

2

)2

+ V 2
[
(εa

k + εb
k )2 + �2

]
(12)

where � = −gb
∑

k〈b−k↑bk↓〉 is a new order parameter
associated with superconductivity in the narrow b-band. For
V �= 0, the dispersion relations above do not vanish for any
value of k, as can be verified from the condition,

Z(k) = Ã2
k − B̃k = (εa

k εb
k − V 2)2 + �2εa2

k = 0 (13)

which has no real solution. These new dispersions are shown
in figure 4. The lower branch of the dispersion has dips for

4
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Figure 4. Dispersion relations for model equation (10). Inset shows
the energy of the minima in the lower dispersion close to ka

F and kb
F as

a function of � and V .

wavevectors close to the original Fermi wavevectors. The
gaps at the dips vary linearly with the order parameter �,
for fixed V , as shown in the inset. This suggests that the
modes at the dips behave as roton-like excitations, with a roton
gap proportional to the superconducting order parameter. For
fixed � changing the hybridization, the gap close to ka

F can
become arbitrarily small (inset of figure 4). As shown in this
figure, this gap may be smaller than the gap at kb

F associated
with superconductivity. This has experimental consequences,
as the activated behavior of thermodynamic properties will be
dominated by the smaller gap due to hybridization. The gap
equation at T = 0 is given by,

1

gbρb
= fb(�, V ) = 1

2

∫ ω0

−ω0

dε
1

ω1(ε) + ω2(ε)

×
[

1 + (ε + (b − α))2

α2
√

Z(ε)

]
(14)

where ρb is the density of states of the narrow b-band at
the Fermi level. For V = 0 this reduces to the BCS gap
equation for a single b-band. In figure 5 we show fb(V ,�)

as a function of � for several values of the hybridization. We
find that fb(V , 0) is finite for values of V �= 0, showing that
in this case a finite interaction gc

b(V ) = 1/(ρb fb(V , 0)) is
necessary for the appearance of superconductivity differently
from a single (usual) BCS band. Notice that for physical
values of the hybridization, V � 0.12, the condition for
superconductivity gc

b(V )ρb < 1 is still in the weak coupling
regime (see figure 5). Then, for small but reasonable values
of V , the present BCS approach yields useful results. As in
the previous section, in this intra-band case we get a finite
Green’s function 〈〈ak↑; b−k↓〉〉, but we find that the anomalous
correlation function 〈b−k↓ak↑〉 is identically zero.

The quantum phase transition at gc
b(V ) is second order, as

can be seen from figure 5, since the condition 1/gc
b(V )ρb =

fb(V ,�)) is first satisfied for � = 0. Besides, the free
energy curves in the inset of this figure show directly the
continuous nature of the transition. Quantum fluctuations such

Figure 5. Gap function fb(V,�) for different values of
hybridization (V = 0.10, 0.12, 0.13 and 0.15 from top to bottom).
Inset: free energy (T = 0) as a function of the order parameter for
different values of the coupling gb. As this increases, the minimum
moves continuously from � = 0 to a finite value as the system enters
the superconducting phase. Similar curves are obtained, but with the
minimum moving to � = 0, if V is increased, starting from V0 for a
fixed gb > gc

b(V0).

as coupling to the electromagnetic field [22] could eventually
drive this transition first order, but this is outside the scope
of the present BCS approximation. Since in real multi-band
systems some hybridization always occurs, the existence of a
quantum critical point should be ubiquitous in superconducting
compounds with intra-band attractive interactions. This QCP
can be reached by applying pressure in the system to vary
the overlap of the atomic orbitals and consequently V , as is
common, for example, in the study of HF materials [18].

4. Intra- and inter-band case

Finally, we address the general case of attraction among
the heavy b-quasi-particles and the a and b fermions (inter-
and intra-band attractive interactions [8]) in the presence of
hybridization. The calculations are long but can be carried
out analytically. The new excitations are obtained from the
equation,

ω4 − [
εa2

k + εb2
k + 2(V 2 + �2

ab) + �2
]
ω2 + 4V ��abω

+ [
εa

k εb
k − (V 2 − �2

ab)
]2 + �2εa2

k = 0. (15)

For the frequency of these excitations to vanish it is required
that [εa

k εb
k − (V 2 − �2

ab)]2 + �2εa2
k = 0. This can occur

by tuning the hybridization parameter, such that V = �ab,
in which case gapless excitations appear at k = ka

F, where
εa

k=ka
F

= 0. Without this fine tuning there are no gapless
modes. If, for symmetry reasons, we neglect the term linear
in ω, we obtain the energy of the excitations in the form

ω12(k) =
√

Āk ±
√

B̄k with,

Āk = Ak + �2

2
(16)

5
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Figure 6. Dispersion relations for the general case (intra-and
inter-band attraction). We consider two cases of �ab larger and
smaller than �c

ab(gb = 0) ≈ 0.2. In the latter case, the dispersion
relation can become very small for wavevectors close to the original
Fermi surfaces.

and

B̄k = Bk + �4

4
− �2

2
(εa2

k − εb2
k ) + �2(V 2 + �2

ab) (17)

where Ak and Bk are given by equations (5) and (6),
respectively. In the appropriate limits these equations reduce
to the cases that we studied before. Notice that in this case
there are two order parameters in the problem, � and �ab,
both defined before. The dispersion relations are shown in
figure 6. Excluding the fine-tuned case V = �ab, any attractive
interaction among the b-quasi-particles removes the gapless
modes in the dispersion relations independently of �ab or the
Fermi surface mismatch. The order parameters are determined
by two coupled equations which for finite temperature are
given by,

1

gρ
= −1

2

∫ ω0

−ω0

dε√
B(ε)

[(
ω2

1(ε) − γ 2(ε)

2ω1(ε)

)
tanh

βω1(ε)

2

−
(

ω2
2(ε) − γ 2(ε)

2ω2(ε)

)
tanh

βω2(ε)

2

]
(18)

and
1

gbρb
= 1

2

∫ ω0

−ω0

dε√
B(ε)

[(
α2ω2

1(ε) − (ε + b − α)2

2α2ω1(ε)

)

× tanh
βω1(ε)

2
−

(
α2ω2

2(ε) − (ε + b − α)2

2α2ω2(ε)

)

× tanh
βω2(ε)

2

]
(19)

where

γ 2 =
(

ε + (αε − b)

2

)2

+ (�2
ab − V 2) + �V

4

×
(

�V + 4

(
ε + (αε − b)

2

))

−
(

ε − (αε − b)

2
− �V

2

)2

. (20)
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Figure 7. The gap function Ḡ(�, �ab) for V = 0.15. For small �
there is a region of first-order transitions for �ab ∼ V .

The right-hand sides of equations (18) and (19) define the gap
functions f̄ (�,�ab) and f̄b(�,�ab), respectively. Adding
these equations, we get (1/ρg) + (1/ρbgb) = Ḡ(�,�ab) =
f̄ (�,�ab) + f̄b(�,�ab). This function is plotted in figure 7.
For �ab ∼ V and small values of � there is a region of first-
order transitions, and this remains valid even as V → 0. The
existence of an intra-band interaction and two order parameters
makes this case qualitatively different from the pure inter-band
interaction, even in the limit V → 0 [10].

5. Conclusions

We have investigated superconductivity in two-band systems
with mismatched Fermi surfaces in the presence of hybridiza-
tion using a mean-field approximation. For inter-band interac-
tions we found a phase with gapless excitations on two two-
dimensional Fermi surfaces. This replaces the BP phase in the
case where the quasi-particles can transmute into one another.
This phase corresponds to a metastable minimum of the free
energy for a constant q-independent interaction. Differently
from the BP phase, pairing occurs between the mismatched
Fermi surfaces, and this results in a net gain of energy due
to the condensation of these quasi-particles. In the intra-band
case we have shown the existence of a QCP at which super-
conductivity is destroyed as hybridization (pressure) increases
beyond a critical value. The phase diagram and quantum phase
transitions can be explored by changing either the strength of
the attractive interactions or the hybridization. Hybridization,
among other things, varies the mismatch of the Fermi surfaces.
Since in real systems it can be controlled by external pres-
sure, it is a useful parameter to investigate the effects of Fermi
surface mismatch in multi-band superconductors. Our mean-
field approach is qualitatively appropriate for treating weak
coupling systems with g, gb ∼ 1, although even in this case
it can miss effects due to fluctuations, such as an additional
p-wave instability [24]. In the metallic problem, the quasi-
particles have spins as extra degrees of freedom and, in prin-
ciple, there is the possibility of an additional s-wave pairing
between quasi-particles at the gapless Fermi surfaces. This is
taken into account in the mean-field approach, even if the in-
teraction between these quasi-particles is not included in the
Hamiltonian. This is manifested through the appearance of
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anomalous Green’s functions involving these quasi-particles.
However, only in the case where g and gb are finite do we find
two order parameters, with none being identically zero.

In heavy-fermion materials [18, 25] hybridization plays
an important role, and they could display the effects and
phase transitions discussed above. As hybridization (pressure)
increases, giving rise to Fermi surface mismatch, we expect
a QCP associated with vanishing superconductivity for
predominant intra-band interactions. If inter-band coupling
is stronger, an FFLO or some other exotic superconducting
phase is expected with increasing hybridization. The origin
of the attractive interaction, whether it is due to phonons or
spin-fluctuations, does not affect the present results, although
the use of a mean-field approximation appears questionable
for treating these strongly correlated materials. However, as
pointed out in [1], for fixed ka,b

F and inter-band interactions, the
critical coupling gc

1,2 → 0 as the mass ratio α → 0. Since this
holds in the presence of hybridization, HF materials that are
characterized by small mass ratios, α, fall in the weak coupling
regime, for which the present mean field is appropriate.

Multi-band superconductors such as MgB2 are also
candidates for investigating the effects discussed here [26].
Pressure decreases the temperature of the superconducting
transition, although in the present stage of experiments it is
not enough to drive them to a QCP. Evidence of topological
electronic transitions has been found in these experiments.
These transitions involve changes in Fermi surfaces and bear
some resemblance [3] to those studied here. We hope
that the results presented in this paper will stimulate further
experimental work in multi-band superconductors.
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